最靠近目标数的三数
最靠近目标数的三数
题目
给定一个未排序数数组和一个目标数,在数组中找到一个和尽可能接近目标数的三元组,返回该三元组的和。如果这样的三元组不止一个,则返回具有最小和的三元组的和。
示例1:
输入:[-2, 0, 1, 2], target=2
输出:1
解释:[-2, 1, 2]是最靠近2的三元组
示例2:
输入:[-3, -1, 1, 2], target=1
输出:0
解释:[-3, 1, 2]是最靠近1的三元组
解答1:
import java.util.*;
class TripletSumCloseToTarget {
public static int searchTriplet(int[] arr, int targetSum) {
if (arr == null || arr.length < 3)
throw new IllegalArgumentException();
Arrays.sort(arr);
int smallestDifference = Integer.MAX_VALUE;
for (int i = 0; i < arr.length - 2; i++) {
int left = i + 1, right = arr.length - 1;
while (left < right) {
//将三个数字的和与'targetSum'进行比较可能会导致溢出
//因此,我们试图去找到一个目标差异
int targetDiff = targetSum - arr[i] - arr[left] - arr[right];
if (targetDiff == 0) //找到和为targetSum的三元组
return targetSum - targetDiff; //返回所有元素的和
// 下面的判定条件的第二部分是为了解决重复三元组的问题,
//在于targetSum差值相等的情况下,targetDiff>smallestDifference时,
//三数之和越小(target=targetDiff+三数之和)
if (Math.abs(targetDiff) < Math.abs(smallestDifference)
|| (Math.abs(targetDiff) == Math.abs(smallestDifference) && targetDiff > smallestDifference))
smallestDifference = targetDiff; //保存该targetDiff
if (targetDiff > 0)
left++; //我们将left指针右移来得到一个更大的数,从而得到更大的currentSum
else
right--; //我们将right指针左移来得到一个更小的数,从而得到更小的currentSum
}
}
return targetSum - smallestDifference;
}
public static void main(String[] args) {
System.out.println(TripletSumCloseToTarget.searchTriplet(new int[] { -2, 0, 1, 2 }, 2));
System.out.println(TripletSumCloseToTarget.searchTriplet(new int[] { -3, -1, 1, 2 }, 1));
System.out.println(TripletSumCloseToTarget.searchTriplet(new int[] { 1, 0, 1, 1 }, 100));
}
}
function searchTriplet(arr, targetSum) {
if (arr === null || arr.length < 3) {
throw new Error('Invalid input: arr must have at least 3 elements');
}
arr.sort((a, b) => a - b);
let smallestDifference = Infinity;
for (let i = 0; i < arr.length - 2; i++) {
let left = i + 1;
let right = arr.length - 1;
while (left < right) {
let targetDiff = targetSum - arr[i] - arr[left] - arr[right];
if (targetDiff === 0) {
return targetSum - targetDiff;
}
if (Math.abs(targetDiff) < Math.abs(smallestDifference) ||
(Math.abs(targetDiff) === Math.abs(smallestDifference) && targetDiff > smallestDifference)) {
smallestDifference = targetDiff;
}
if (targetDiff > 0) {
left++;
} else {
right--;
}
}
}
return targetSum - smallestDifference;
}
console.log(searchTriplet([-2, 0, 1, 2], 2));
console.log(searchTriplet([-3, -1, 1, 2], 1));
console.log(searchTriplet([1, 0, 1, 1], 100));
def search_triplet(arr, target_sum):
if arr is None or len(arr) < 3:
raise ValueError('Invalid input: arr must have at least 3 elements')
arr.sort()
smallest_difference = float('inf')
for i in range(len(arr) - 2):
left = i + 1
right = len(arr) - 1
while left < right:
target_diff = target_sum - arr[i] - arr[left] - arr[right]
if target_diff == 0:
return target_sum - target_diff
if abs(target_diff) < abs(smallest_difference) or (abs(target_diff) == abs(smallest_difference) and target_diff > smallest_difference):
smallest_difference = target_diff
if target_diff > 0:
left += 1
else:
right -= 1
return target_sum - smallest_difference
print(search_triplet([-2, 0, 1, 2], 2))
print(search_triplet([-3, -1, 1, 2], 1))
print(search_triplet([1, 0, 1, 1], 100))
package main
import (
"fmt"
"math"
"sort"
)
func searchTriplet(arr []int, targetSum int) int {
if arr == nil || len(arr) < 3 {
panic("Invalid input: arr must have at least 3 elements")
}
sort.Ints(arr)
smallestDifference := math.MaxInt32
for i := 0; i < len(arr)-2; i++ {
left := i + 1
right := len(arr) - 1
for left < right {
targetDiff := targetSum - arr[i] - arr[left] - arr[right]
if targetDiff == 0 {
return targetSum - targetDiff
}
if math.Abs(float64(targetDiff)) < math.Abs(float64(smallestDifference)) ||
(math.Abs(float64(targetDiff)) == math.Abs(float64(smallestDifference)) && targetDiff > smallestDifference) {
smallestDifference = targetDiff
}
if targetDiff > 0 {
left++
} else {
right--
}
}
}
return targetSum - smallestDifference
}
func main() {
fmt.Println(searchTriplet([]int{-2, 0, 1, 2}, 2))
fmt.Println(searchTriplet([]int{-3, -1, 1, 2}, 1))
fmt.Println(searchTriplet([]int{1, 0, 1, 1}, 100))
}